Trusted by the world’s leading brands

What slows teams down when adopting machine translation

Generic MT can’t meet enterprise quality expectations

Out-of-the-box engines often fall short when nuance, brand voice, or industry-specific terminology matters.

Lack of visibility across translation workflows

Without centralized oversight, teams struggle to measure MT performance or control cost and consistency.

Scaling MT organization-wide is too complex

Legacy tools make it hard to extend Machine Translation access securely across departments, regions, and business functions.

En nous appuyant sur la traduction automatique de Phrase, nous avons réussi a atteindre une augmentation de 200 % dans les langues traduites au sein de notre centre d’aide. Cela nous a permis de garder une longueur d’avance sur l’équipe de production : quand il a fallu localiser la documentation des boutiques d’applications mobiles, nous étions prêts. Grâce à des fonctionnalités innovantes comme la sélection automatique TA, nous sommes sûrs de toujours pouvoir exploiter le meilleur moteur possible pour chaque traduction, qu’il s’agisse de jeux, de contenu marketing ou encore de documentation.

Jeremy Fair

Directeur des services localisation et Business Systems

Phrase donne à Zendesk la capacité d’automatiser de nombreux processus, nous permettant d’utiliser efficacement les solutions basées sur l’IA. Grâce à l’automatisation mise en place, nous sommes en mesure de continuer à faire évoluer nos opérations tout en améliorant la qualité.
Photo of Yoko Drain

Yoko Drain

– Directrice générale de l’internationalisation produit chez Zendesk

Proven impact from enterprise-ready translation software

cost savings with Machine Translation post-editing
Reduce translation spend with hybrid workflows that combine MT scale with human quality.

of translation jobs already use Machine Translation
Most Phrase customers rely on machine translation to accelerate global delivery.

drop in post-editing volumes
Phrase’s quality tools help you reduce friction for linguists and deliver faster final output.

FAQs: What you need to know before choosing a machine translation platform

What makes Phrase different from other machine translation tools?

Phrase lets you create custom MT engines, choose from 30+ providers, and fine-tune quality, all in one secure, scalable platform.

Can I use Phrase with my current CMS and tech stack?

Yes. Phrase supports 50+ integrations across TMS, CMS, and development tools, or you can use our open API.


Is Phrase suitable for regulated industries or sensitive content?

Yes. Phrase offers advanced security, data privacy, and enterprise-grade governance, ideal for finance, healthcare, and legal teams.

How do we measure MT performance with Phrase?

With built-in MT quality estimation and analytics dashboards, you’ll see where MT performs well and where human editing is still needed.

Can non-linguists in our company use Phrase?

Yes. With API access and pre-approved MT settings, you can safely give marketing, support, or product teams access to fast, on-brand translation.

How does Phrase pricing work?

Our pricing is tailored to team size, usage, and specific translation needs. We offer flexible tiers and our team will help you find the best fit during your demo.

Award-winning platform

Based on the authentic reviews of hundreds of verified users, this makes us
the trusted leader in helping you open the door to global business.

G2 4.6 stars rating | Phrase

Request a personalized demo and see how Phrase helps +4,500 brands scale high-quality, cost-effective translation across your business.

hbspt.forms.create({ portalId: « 584311 », formId: « beafebc5-6573-4213-b2bf-1e0b4f9b973a », region: « na1 » }); var cpTenantDomain = « phrase »; var cpRouterName = « phrase_new »; var lead = {}; window.addEventListener(« message », function(event) { if (event.data.type === « hsFormCallback ») { const eventName = event.data.eventName; if (eventName === « onFormSubmit ») { for (var key in event.data.data) { if (Array.isArray(event.data.data[key].value)) { event.data.data[key].value = event.data.data[key].value.toString().replaceAll(« , », « ; »); } lead[event.data.data[key].name] = event.data.data[key].value; } if (Object.keys(lead).length <= 1) { lead = event.data.data; } } else if (eventName === "onFormSubmitted") { // Submit to Chili Piper ChiliPiper.submit(cpTenantDomain, cpRouterName, { map: true, lead: lead, onSuccess: function() { // Optional redirect on success window.location.href = "/thank-you-demo"; } }); // Push event to GTM dataLayer window.dataLayer = window.dataLayer || []; window.dataLayer.push({ 'event': 'formSubmitted', 'leadsUserData': { 'email': lead.email || '', 'phone_number': lead.phone || '' } }); } } });